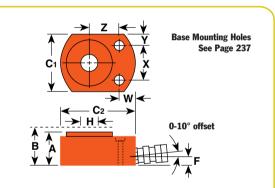
Low profile **CYLINDERS RLS SERIES**

5-150 Ton Single-Acting, Spring-Return

20

Ideal for confined areas from $1^{5}/8''$ to 4" clearance.

- · Cylinder body, piston and gland nut "Power Tech" treated for corrosion and abrasion resistance (see page 8).
- Standard domed piston rod (5-30 ton) or swivel cap (50-150 ton) minimize effects of off-center loading.
- · Unique heavy duty spring provides fast piston return.
- A 9796 ³/₈" NPTF female half coupler is standard with each cylinder (the RLS50 has a 3/8" coupler which is not angled). Oil ports are ³/₈" NPTF (except the RLS50).
- Couplers on all cylinders, except RLS50, are angled upward for extra clearance.


ASME B30.1 10.000 PSI

PO SPX

RLS100

EAN

RLS1000S

C1 & C2 H A B F W Ζ X Re-Ex-Piston Int. Tons Base Cyl. Oil tracted tended Outside Rod Prod. Bore Cyl. Eff. Press. to at Cap. Stroke Order Cap. **Height Height** Dia. Port Dia. **Mounting Hole Location** Dia. Area at Cap. 10,000 Wt. (in.) (in.) (in.) (in.) (in.) (in.) (in.) (sq. in.) (psi) (tons) (in.) No. (cu. in.) (lbs.) psi RLS50 5 .62 15/8 $2^{3}/_{16}$ $1^{5}/_{8} \times 2^{9}/_{16}$ $^{3}/_{4}$ ⁵/8 ³/₄ $1^{1}/_{8}$ $^{1}/_{4}$ 1 11/8 .994 10,061 4.97 2.2 ⁹/₁₆ **RLS100** $2^{3}/_{16}$ $2^{3}/_{16}$ x $3^{1}/_{4}$ 10 1.0 $1^{3}/_{4}$ 5/8 $\frac{11}{16}$ $\frac{17}{16}$ ³/₈ 1⁵/₁₆ 111/16 2.236 8,943 11.18 3.3 7/16 $^{3}/_{4}$ ⁷/₁₆ **RLS20**0 ²¹/₃₂ $^{23}/_{32}$ $1^{15}/_{16}$ $^{17}/_{32}$ 1 $^{9}/_{16}$ 20 2.0 9,029 22.15 2 $2^{7}/_{16}$ 3 x 4 $1^{1}/_{8}$ 2³/₈ 4.430 5.6 **RLS300** $2^{13}/_{16}$ $3^{3}/_{4} \times 4^{1}/_{2}$ 23/32 $^{13}/_{16}$ $2^{1}/_{16}$ ²⁷/₃₂ 1³/₄ 30 3.2 2⁵/₁₆ 27/8 6.492 9,242 32.46 8.6 $1^{3}/_{8}$ ¹/₂ 50 RLS500S 6.0 $2^{5}/_{8}$ $3^{1}/_{4}$ $4^{1}/_{2} \times 5^{1}/_{2}$ $2^{7}/_{32}$ $1^{3}/_{4}$ $^{15}/_{16}$ 2⁵/₈ $^{15}/_{16}$ $2^{1}/_{8}$ 31/2 9.621 10,394 48.10 14.0 5/8 ⁵/₈ **RLS750S** 75 9.9 $3^{1}/_{8}$ $3^{3}/_{4}$ $5^{17}/_{32} \times 6^{1}/_{2}$ 1 ¹⁵/₁₆ 3 $1^{17}/_{64}$ $2^{19}/_{32}$ 4¹/₂ 15.904 9,431 79.52 23.3 $2^{1}/_{8}$ ⁵/₈ **RLS1000S** 12.3 33/8 100 4 $2^{1/2}$ ¹³/₁₆ 3 $1^{1}/_{2}$ $2^{13}/_{16}$ 5 19.635 10,186 98.17 30.0 6 x 7 1 150 ⁹/₁₆ **RLS1500S** 17.2 4 $4^{9}/_{16}$ $7^{1}/_{2} \times 8^{1}/_{2}$ $1^{5}/_{16}$ 3 $1^{5}/_{16}$ $4^{5}/_{8}$ $1^{7}/_{16}$ $3^{1}/_{8}$ 61/4 30.680 9,778 153.39 52.0

